Buoyancy: Salt Water vs. Fresh Water February 26, 2009
Posted by Chris Sullivan in Training. Tags: Buoyancy, Dive Training, Divemaster, Diving, Diving Physics, Fresh Water, Salt Water, SCUBA, Scuba Calculations, Scuba Diving, Scuba Instructor, Scuba Training, Sea Water, Training trackback
Apparently this is a great source of confusion – or perhaps my previous writings about the subject have attracted many searches, and so biases my view of what divers are interested in. Anyway, I’m going to attempt to write something clear on the subject. Here are some of the searches on the topic that have found their way to my blog:
Bạn đang xem: Chronicle of an older diver
bouyancy of sea water bouyancy salt buoyancy salt water vs fresh scuba buoyancy calculations salt water buoyancy difference between salt water a buoyancy fresh salt buoyancy of salt & freshwater buoyancy of sea water calculators salt kg required for tank foot salt water buoyancy calculation salt water fresh water buoyancy which is more buoyant fresh or salt water why is bouancy more in salt water than fresh why salt water is more buoyant than fresh sea water density bar msw why is salt water more buoyant is salt or fresh water more buoyant buoyancy salt water fresh water
Xem thêm : How Many Scoops of Coffee Per Cup for a Perfect Brew?
Obviously people want to know. The answer is fundamentally simple – objects (including divers) are more buoyant in salt water than in fresh water because salt water is denser than fresh water. Why is salt water denser than fresh? Because salt is denser than water and so if you add it to water the resulting solution is denser than pure water. By how much? The salinity (saltiness) of the ocean varies, but the generally accepted average amount is 2.5%. So salt water weighs 2.5% more than the same volume (a gallon or litre, for example) of fresh water.
Buoyancy is an upward force equal to the weight of water displaced by the object. A cubic foot of fresh water weighs 62.4 pounds, so an object with a volume of 1 cubic foot would experience 62.4 pounds of upward force due to buoyancy when immersed in fresh water. Gravity will exert an opposite (downward) force equal to the object’s weight, so if the object weighs less than 62.4 pounds it will float. If the object weighs more than 62.4 pounds it will sink. If the object weighs exactly 62.4 pounds it will be neutrally buoyant, and will stay where it is unless pushed by something (current, turbulence, a diver, etc.).
In salt water, that same 1 cubic foot will displace 64 pounds, because that’s what a cubic foot of sea water (which you recall is heavier by 2.5 percent) weighs. So there is 1.6 pounds more buoyancy in salt water than in fresh. That means if an object with a volume of 1 cubic foot weighs 63 pounds it will float in salt water and sink in fresh water. So objects in salt water are more buoyant than objects in fresh water because salt water is denser than fresh.
Xem thêm : Ounces to Teaspoons Conversion Calculator
Note that it is incorrect to say that salt water is more buoyant than fresh water. Objects in salt water are more buoyant than objects in fresh water. The buoyant force is exerted on an object, not the water itself.
Hope that clears things up!
P.S. The density of salt is 2.16 grams per cubic centimetre vs. the maximum density of fresh water at 1 gram per cubic centimetre. Sea water is about 3.5% salt by weight. A kilogram of sea water will have 35 grams of salt and 965 grams of fresh water (I’m ignoring the stuff that’s in sea water which isn’t water and salt). The volume of the water will be 965 cubic centimetres, while the volume of the salt will be 35 grams divided by the density of 2.16 which is 16.2 cc. The total volume of the components of this kilogram of sea water is 981.2 cc, versus a kilogram of fresh water at 1000 cc, so the combined density is almost 2% more with the salt than with fresh. This is a little less than the 2.5% real world difference – what’s going on?
My chemistry knowledge runs out at this point but my guess is that when salt dissolves in water, the salt molecules pack a little bit closer together with the water molecules than they do with each other, making the volume a bit smaller than the sum of the volumes of the salt and the water separately. If I find out the real answer I’ll post it here, unless someone beats me to it.
Nguồn: https://buycookiesonline.eu
Danh mục: Info